MTH 304: Metric Spaces and Topology Homework II

(Due 23/01)

- 1. Show that products and subspaces of Hausdorff spaces are Hausdorff.
- 2. Show that the cofinite topology in \mathbb{R} is non-Hausdorff. [Hint: Find where the sequence $x_n = 1/n$ converges.]
- 3. Show that X is Hausdorff if and only if the *diagonal*

$$\Delta = \{(x, x) \mid x \in X\}$$

is closed in $X \times X$.

- 4. Let A, B, A_{α} be sets of a space X. Then show that
 - (a) $\bar{A} \times \bar{B} = \overline{A \times B}$
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $\cup_{\alpha} \overline{A}_{\alpha} \subset \overline{\cup_{\alpha} A_{\alpha}}$. Give an example where equality fails.
- 5. Let (X, \mathcal{T}) be a topological space, and $A \subset X$. Then the boundary of A (denoted by ∂A) is defined by

$$\partial A = \bar{A} \cap X \setminus A$$

- (a) Show that $\overline{A} = A^{\circ} \sqcup \partial A$.
- (b) Show that $\partial A = \emptyset \iff A$ is both open and closed.
- (c) $U \in \mathcal{T} \iff \partial U = \overline{U} \setminus U.$
- 6. For each of the following subsets $A \subset \mathbb{R}^2$, find A° , ∂A and \overline{A} .
 - (a) $A = \mathbb{Q} \times \mathbb{R}$.
 - (b) $A = \{(x, y) | x > 0 \text{ and } y \neq 0\}.$
 - (c) $A = \{(x, y) \mid 0 < x^2 y^2 \le 1\}.$
 - (d) $A = \{(x, y) \mid x \neq 0 \text{ and } y \leq 1/x\}.$